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Computational experiments were conducted with three

methods for solving the assignment problem: Kuhn's

I ~ Hungarian method, a primal method due to Balinski and
Gomory, and a negative cycle method proposed by Klein.

Kuhn's method is seen to be the best of the three.
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1. INTRODUCTION AND SUMMARY

In [4] a general method was proposed for finding minimal

cost flaws in networks; for reasons which will be made appar-

ent in the next section we call it the "negative cycle"

method. The purpose of this paper is to report on some com-

putational experiments with two variants of this method as

applied to the special minimal cost flow problem known as the

"assignment problem", with the Balinaki-Gomory algorithm for

the assignment problem [1], and with the Hungarian method for

the assignment problem proposed by Kuhn [5].
The results of our experiments, detailed in section 4

are easily summarized: Kuhn's Hungarian method was the most

efficient (i.e., the fastest) of the methods tested. Over

the range of problem sizes with which we worked (10 x 10 to

100 x 100 problems) it was approximately two to five times

* This research was supported by the Army, Navy, Air Force
and NASA under a contract administered by the Office of
Naval Research. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Currently at the University of Montreal.
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faster than the next best Balinski-Gomory algorithm. The

efficiency of variants of the negative cycle method is

directly dependent on the efficiency of the sub-routine

which is used to locate such cycles. Two such sub-routines -

the Floyd-MWrchland method for finding all shortest routes in

a network ([2], [6]) and the Ford-Fulkerson algorithm for

finding shortest routes from a particular vertex to all

others [3] were tested. Although the Ford-Fulkerson algo-

A rithm was found to be substantially the better of the two, it
is still not good enough to make the negative cycle method

Acompetitive with the others.
A

I
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2. THE ASSIGNMENT PROBLEM

In brief, the assignmen' problem is to fill n jobs _

by as many men at least total cost. Let ajj > 0 repre-

sent the cost of assigning man i (i - l,...,n) to job

j (j n+l,...,2n), A an arbitrary assignment of n men

to n jobs, v(A) the cost of such an assignment (i.e.,

v(A) = Z a..), and a the set of all (n!) possible
A 1] ____

assignments. Then, an optimal assignment A° , by definition,

satisfies

0N

(1) v(A : v(A) , for all A E 7

i.e.

E a E a.. for all A e
A0 A A 1)

Evidently an assignment A* is optimal if and only if

there is no assignment A such that

(2) a.. - a. <0 , for all A A*.
A 1] A* 1j

Now, suppose we associate the following bipartite

directed graph G(A*) with assignment A*. Vertices of the

first part will correspond to men and those of the second
F part to jobs. A directed edge connects job j to man i
I-.

. .. . . . . . . . . . . . . . . . . . . . . . . ..
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with associated cost -aj, if aij e A*; otherwise, an M

edge connects man i to job j with associated cost

a... Thus for a small (say n - 3) problem with, say,

An ( - 3: i 1,2,3) the graph has the following appear-

ance.

-a1 4

004 4

_.,,. "" 5526 -

a36 :

[:Figure 1 : The Graph G (A*) _A

" X~n such a graph any directed cycle C consists of an even--

- = number of distinct directed edges with alternate edges
associated with assignment A*. A cycle is of interest because

:-e it can be used as a way of comparing the value of A* with

-- that of another assignment, say A', where A' is identical

N

' to A* except for those components associated with the edges

.- of the cycle C. Within C the components of A* are

~associated with the negative cost edges and those of A'

V7with the positive cost edges. For example, in Figure 1,--

~suppose C =  (,)(52), (2,4), (4,1) ) (shown with solid

- edges), then the components of A' in C are (1,5) and

-7-
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(2,4) while those of A* are (5,2) and (4,1). The differ-

ence in value between A' and A* is a15  52 +a - a4 1is 52 a24 1

If this difference is negative, then A' is a better assign- _

xnent than A*.

More generally, given a directed cycle C in G(A*) and

an associated assignment A(C), the value of the cycle v(C)

is given by

(3) v"A) - v(A*) aii - a
A(C) A*

= a - a.. =V(C)
~CCA CC3%

From (2) we know that the assignment A* will be optimal

if and only if there is no assignment A such that v(C) < 0.

In terms of the graph G(A*) this means that A* is optimal

if and only if G(A*) contains no cycles whose value is

negative.

- 1 - ---.
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3. A METHOD FOR SOLVING THE ASSIGNMENT PROBLEM

The preceding remarks suggest the following general

method for solving the assignment problem [4).

Preliminary, Choose an arbitrary assignment.

Step 1z Construct the graph associated with the

assignment.

Step 2: Test the graph for the existence of a cycle

whose value is negative.

(a) If there are none - stop; the

given assignment is optimal.

(b) If a negative valued cycle exists,

go to Step 3.

Step 3z Trace the negative cycle (i.e. locate it)

and exchange the components of the current

assignment with those of the other components

of the cycle. This yields a new improved

assignment. Return to Step 1.

Testing the graph for the existence of a negative cycle

can be done in a variety of ways. However, all of those

known to us to be "reasonably" efficient, are methods for

solving shortest route problems in graphs containing some

negative costs (distances). The two which we have explored

are:

1) The Floyd-Murchland method for finding all shortest

routes in a network (2), (61 and

z7-
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2) The Ford-Fulkerson algorithm (3] for finding a

shortest route from a particular vertex to all

others in the network.

Both of the above algorithms "work", in the sense of find-

ing the shortest Daths, if the network does not contain any

negative cycles, and both break down if such cycles exist.

This condition, when it occurs, leads to Step 3 of the

proposed procedure: tracing the cycle so that a new improved

asaignment can be determined. Here also we have explored

two methods-

1) the Ford-Fulkerson method used above, also provides

a simultaneous cycle tracing routine, and

2) the use of a "routing" matrix which, when constructed

simultaneously with the application of the Floyd-

Murchland method, serves to trace the vertices

involved in the negative cycle.

The details of the two methods are given in Appendices

A and B.

Iz
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4. THE COMPUTATIONAL EXPERIMENT

One hundred distinct assignment problems (10 each of

size 10 x 10, 20 x 20, ., 100 x 100) were generated using

a uniform distribution on the integers from 0 to 50.

Each of the 10 x 10 to 50 x 50 problems were used to test

all four computational methods using an IBM 360/75 com-

puter. These first runs demonstrated that the negative

cycle method, with either sub-routine, was not competitive

with the other two, hence the remainder of the experiment

involved only the Balinski-Gomory and Kuhn algorithms.

The results are given in Table 1, below.

NUM

-- - r'%.

. 4I1
° i ---

_;}. 4

I= .

I
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NEGATIVE CYtCLE METHOD
PROBLEM WIHWT ALINSKI- KUHNIS
SIZE FLY-FR-GOMORY HUNGARIA.N

FUCLYD FLORS- METHOD METHODI

l~ 0 .63 .10 .04 .02
(.28, 1.65) (.05, .17) (.02, .05) (.02, .03)

20.72 .70 .18 .10a
(3.4, 12.5) (.35, 1.02) (.12, .25) (.07, .13)

3x3040 2.2 .55 .26
(29, 50) (1.9, 2.5) (.43, .77) (.15, .50)

4 40 121 4.4 1.1 .38
(67 156) (2.2, 6.1) (.9, 1.4) (.17, .73)

5x50 209 8.1 1.9 .51

(75, 444) (4.9, 10.4) (1.5, 2.3) (.35, .70)

60 603.1 .92
(2.7, 3.9) (.62, 1.36)

cL7 x7 4.6 1.5
(4.0, 5.1) (.9, 2.5)

80 806.4 1.4
(5.7, 7.3) (1.1, 1.8)

90 x 909.18
(8.1, 10.0) (1.4, 3.2)

10(10.1, 12.6j (1.5, 2.6)

TABLE 1: AVERAGE SOLUTION TIM4ES (SECS.) - 10 TRIALS EACH,I(MINIMUM AND MAXIMUM SOLUTION TIMES IN PARENTHESIS).
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KThe relative merits of the two methods of detecting

and tracing negative cycles may be evaluated more precisely

by looking at the time per iteration. The reason for this

is that each iteration (except the last in each trial)

includes exactly one successful search for such a cycle; 4

thus the average time per iteration is approximately equal

to the time needed to locate and trace a negative cycle.

The results of such an evaluation are shown in Table 2. As

can be seen the Ford-Fulkerson shortest route algorithm is

still the better method.

NEGATIVE CYCLE METHOD
PROBLEM

SZWITH WITH- SIZE

FLOYD-MURCHIAND FORD-FULKERSON

10 x 10 .63/3 .21 .10/2 .05

20 x 20 7.7/9 = .86 .70/5 = .. 14

30 x 30 42/16 = 2.6 2.2/8 = .28

40 x 40 121/20 = 6.0 4.4/10 = .44

50 x 50 209/15 = 14 8.1/12 = .67

TABLE 21 r.VERAGE SOLUTION TIME (SECS.) PER AVERAGE

NUMBER OF ITERATIONS TO SOLUTION

=I

II



A. I
12

5. CONCLUDING REMARKS

A) Our evaluation of the performance of the algorithms

tested assumes that the computer programs employed for each

method are equally "efficient" in implementing the algo-

rithms. If this is not the case, we believe that the large

difference between the performances of the various algo-

rithms suggest that the results would hold for improved

programs.

B) Although the negative cycle method showed up as the

least efficient of those tested, it still is potentially

improvable. It awaits the development of an efficient rians

of detecting (and tracing) the existence of such cycles in a

directed graph. Its current, and perhaps only, virtue is

its ease of presentation in the classroom - independent of

linear programming theory.

C) The assignment problem experiments suggest similar

relative performances for the generalizations of each of

these methods for the transportation problem. If this is

true, the Ford-Fulkerson algorithm (a generalization of

Kuhn's method) for the transportation problem is also likely

to be the best of the group.

I=

I

I
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A P P E N D I X A

NEGATIVE CYCLE ALGORITHM FOR THE ASSIGNMENT rROBLEM WITH

FORD & FULKERSON SHORTEST ROUTE METHOD

1. Start computations with a feasible solution.

la. Determine an initial solution using Dantzig's rule.t

Assign x - 1 for a =nmin [a..]
pq i,j

Cross out row p and column q

Sp q, 1 for a - min [a,,] and so on1~ Pq1 i~p, j#q

until a complete assignment is found.

lb. Define the matrix A' (x)F-a . if x.. = 1
a if = 0

2. Use the following heuristic rul.ett to determine an entry

point for step 3.

For i =1,2,...,n we have an assignment ji such that
L1

t One of the presumed advantages of a "primal" method is

its' ability to use "good" starting solutions. Since we do

not know of any studies indicating whether this rule is

better than others, its selection was arbitrary.

ft The purpose of :his rule is to try to get as "close" to
a negative cycle as possible. Since if the initial point
is far from such a cycle, it will take longer to find it.
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Sx. = 1 and calculate

=rmin (a *+ min (c = inA
i J' i k i i

and (J* = ri* = min
i

Start at column r and apply the labeling routine in

an attempt to find the negative cycle. I
Let (Mi,d i) denote the label of column j in A'(x).

M indicates the existence of a chain from the initial

point to M, and an edge toward the column (vertex) _

j such that the total cost (distance) is di.

Similarly a row label is (Jj,d

3. If J is the initial point - Label column r (-,o)
r

3a. Mark each row with label (Jr' la!r)
3b. Mark each column j r, (M.,d + a..),

1 1 1

where a.. (a.ila!. g 0 and x.. = 1)
wr a3 ji ji 1

3c. Label each row by

{ , min (d + a

where represents the column at which the minimum

is attained.

3d. Label each column (Mi,di + aij)

Continue steps b and c until the initial point's

label becomes negative. If a set of row labels is

duplicated - stop - optimal si "tion reached.

4. The negative cycle C, is identified by tracing back irom

the initial point according to the succession of adjacent

17L;
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row and column labels until the initial point is

encountered for the second time or some other vertex

is encountered twice, indicating a negative cycle that

does not involve the intial point.

5. The negative cost cycle is represented by a row vector

C(X). Modify the flow X as follows

- if (MiJj) C-

.' , if1X if ImJl E C and xi. 1

1 if I  i E c and x.. 0

return to step lb.

4-4

g I
I

=I

- 1
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APPENDIX BI° U

NEGATIVE CYCLE ALGORITHM FOR THE ASSIGNMENT PROBLEM BASED

ON THE FLOYD-MURCHLAND "ALL SHORTEST ROUTES" METHOD

1. Start computations with feasible solution

la. Use Dantzig's rule j
Assign xp, = 1 for ap = min [aij].

i,j
Cross out row p and column q

X -- 1 for a - min (ai]xp~q'q'

and so on until a complete assignment is found.
0

lb. Define D a 2n x 2n matrix with elements

d. = 0, i,j = 1,...,n and i,j = n+l,... , 2 n

= a.,, i = l,...,n and j= n+l,...,2n;

- -a., x. > 0 , i = n+l,...,2n, j=l,...,n

- , x.. = 0, i = n+l,...,2n; jl,...,n.

Note: In the computations, the matrix X = [x..] is not

required.

2. Test for the existence of a negative cycle by applying

the Floyd-Murchland algorithm to the D matrix.

2a. For k = l,...,n compute
dlk) - k (k-i)
d (k) min (d. +]k-1 for ij kij jk ik j

and

2b. Record "ROUTE" on routing matrix U - [u..]
1)
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;=U(k) ={Uk if dik J d (k-i)

ij
S-otherwise

and

1) 1 2n x 2n*

If a substitution is made in [dij] such that the

shortest route from i - j is through vertex k,

the index k serves to trace the path of the short-

est distance from i - j.

2c. Test for all k the value of dii

If d.. 0 for all i and k < n, go to 2a.

If d.. 0 for all i and k = n, stop,
optimal solution reached.

If d.. < 0 for some i record r = (ild.. < 03
and go to step 3.

3. Cycle Tracing

Let C be a row vector that contains the cycle elements.

The maximum size of this vector is (2n + 1).

3a. Initiate search with cI = r; c2 = U c = r2 rr 3Z;
Let k denote the number of elements in C3 (k = 3

at this stage).

3b. For i =1,..., 2n

Let i l =c; i cV1 i' 2 =i+1*
ifi 2 - 0 return to start of 3b.
1 2

If U .i 0 then modify c as follows 4

1 2Ii
____ i
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± c

c C for J-l,...,k_- 3+2 cj+l

and
k' =k +1

then go back to start of 3b.

When this procedure terminates, C - (c1  contains the

cycle elements and k equals the number of entries in

the cycle.

The number of vertices involved in the cycle is k - 1.

4. Modify solution -]

4a. For i = i,...,k

Let i= i ; 2  i + 1

4b. If c. > ci go to 4c, otherwise go to 4d.
1 2

4c. If d < 0 put d. d. -- ,
1 2 1112

otherwise d.± = -d. d. and return to 4a.
112 '1 2

4d. If d. ± < 0 put di =,

2 2

otherwise d. = - d and return to 4a.
12 12

t When this procedure terminates for i 1,...,k

return to step 2.

.. ~ - ~ -. ~ .-----.
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START

Determine an initial
' solution

-I(Dantzig's Rule)

&Define the matrix A'(x)

Find index r associated

g~ ark initial row labelsI

Mark initial column labelsl

Mark another set

of row labelst

Are the new row labels n
all different than no STOP

the previous?

yes

Mark another set
of column labels

Is the initial point's
label negative?

[10 j rc egative cyclel

"Moi the assi nment

FLOW CHART FOR NEGATIVE CYCLE ALGORITH4

WITH FORD & FULKERSON SHORTEST ROUTE MEHTOD
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START

Determine an initial
solution

(Datzi'sRule)V

Rie rote inmatrix 
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